Obwohl die DNA-Integrität in hohem Maße geschützt ist, kann die DNA durch verschiedene Umweltfaktoren, reaktive Sauerstoffspezies und Fehler bei der DNA-Replikation beschädigt werden. Die DNA-Reparatur ist ein kontinuierlich ablaufender zellulärer Prozess, der verschiedene Reparaturmechanismen zur Beseitigung von DNA-Schäden beinhaltet. Fehler der DNA-Replikation werden über die Proofreading-Funktion (Korrekturlesen) der DNA-Polymerase entdeckt. Bei einzelsträngigen DNA-Schäden kann die Zelle Exzisionsreparaturtechniken und Photoreaktivierung anwenden. DNA-Doppelstrangbrüche werden durch homologe Rekombination oder nicht-homologe Endverknüpfungen behoben. Gestörte DNA-Reparaturmechanismen aufgrund von Alter, Dysfunktionen oder überlasteten Reparatursystemen können zu Apoptose, zellulärer Seneszenz oder der Entstehung bösartiger Tumore führen.
Aktualisiert: Feb 17, 2023
Ursachen für DNA-Schäden:
Proofreading erfolgt während DNA Replikation durch die DNA-Polymerase (Enzymkomplex, der den neuen DNA-Strang synthetisiert):
UV-Strahlung bewirkt die Bildung von Pyrimidin-Dimeren (C und T) über kovalente Bindungen zwischen benachbarten Basen. Dadurch wird eine Konformationsänderung („Ausbuchtung“) der DNA erzeugt. Diese Defekte können durch den Prozess der Photoreaktivierung behoben werden.
Die Zelle verfügt über drei primäre Mechanismen, um Schäden an einem DNA-Einzelstrang zu reparieren: Basenexzisionsreparatur, Nukleotidexzisionsreparatur und Mismatch-Reparatur.
Alle drei Mechanismen folgen dem gleichen allgemeinen Prinzip:
Bei der Basenexzisionsreparatur werden einzelne beschädigte Basen herausgeschnitten und ersetzt.
Im Allgemeinen sind doppelsträngige DNA-Schäden schwieriger zu reparieren, da es keine Vorlage gibt, von der die richtige Basensequenz abgelesen werden kann. DNA-Doppelstrangbrüche können durch homologe Rekombination oder nicht-homologe Endverknüpfung behoben.
Bei der homologen Rekombination (HR) wird das nahezu identische Schwesterchromatid oder homologe Chromosom als Vorlage für die Reparatur verwendet:
Modelle der homologen Rekombination:
Doppelsträngige Brüche können unter Verwendung der homologen Rekombinationsmaschinerie auf verschiedene Weise repariert werden. Die DNA-Enden werden zuerst in einzelsträngige 3′-Überhänge umgewandelt. Diese 3´-Überhänge assoziieren mit der homologen Matrize (rot) und es erfolgt eine komplementäre DNA-Synthese (gestrichelte Linie). Dargestellt sind drei mögliche Reparaturmechanismen.
A: Bei der Doppelstrangbruchreparatur (DSBR) binden beide Enden des gebrochenen DNA-Doppelstrangs an die homologe Matrize und leiten die neue DNA-Synthese ein. Dadurch bilden sich Holliday-Junctions an beiden Enden, die von Nukleasen aufgelöst werden. Es kann zu einem Crossing over kommen oder ein Produkt ohne Crossing over entstehen (dargestellt ist der DNA-Strang ohne Crossing over).
B: Nachdem der einzelsträngige DNA-Überhang in die homologe Matrize eingedrungen ist, findet eine komplementäre DNA-Synthese vom 3′-Ende (gestrichelte rote Linie) statt, bis genügend DNA synthetisiert wurde, um die Bruchstelle zu verbinden. Beim Synthesis-Dependent Strand Annealing (SDSA) wird das eindringende 3´-Ende nach der Synthese erneut mit dem ursprünglichen 5´-Ende verknüpft.
C: Bei der Break-Induced Replication (BIR) geht ein Bruchende verloren. Das verbleibende 3´-Ende dringt in die homologe DNA-Matrize ein und wird bis zum Ende des Chromosoms verlängert.